
Abstract
Several state-of-the-art technologies are

leveraged to produce a low-cost and high
performance single chip memory controller with a new
memory system architecture, more than doubling the
effective size of the installed main memory without
significant added cost. This unique chip is the first of
its kind ever to employ real-time main memory content
compression at a performance competitive with the
best the market has to offer. A large low-latency
shared cache exists between the Intel PIII processor
bus and a content compressed main memory. Novel
high-speed and low-latency on-chip hardware
performs real-time compression and decompression of
data traffic between the shared cache and the main
memory. Sophisticated memory management
hardware dynamically allocates main memory storage
in small sectors to accommodate storing the variable
sized compressed data, without the need for
“garbage” collection or significant wasted space due
to fragmentation. Though the main memory
compression ratio is limited to the range 1:1 - 64:1,
typical ratios range between 2:1 - 6:1, as measured in
“real-world” system applications. The 133MHz
memory controller chip is fabricated in 0.25 micron
standard cell ASIC technology and is packaged in a
731 EPBGA. The chip, called Pinnacle, is marketed
by ServerWorks, Inc, in Santa Clara, CA.

1.0 Introduction

Memory costs dominate both large memory
servers and expansive compute server environments,
like those employed in today's “data centers” and
“compute farms”. These costs are both fiscal and
physical (e.g., volume, power, and performance
associated with the memory system implementation),
and often aggregate to a significant cost constraint that
the Information Technology (IT) professional must
tradeoff against compute goals.

Data compression techniques are employed
pervasively through the computer industry to increase
the overall cost efficiency of storage and
communication media. However, despite some
experimental work [7][3], system main memory
compression has not been exploited to its potential.
IBM’s Memory eXpansion Technology (MXT)
addresses the system memory cost issue head-on with a
new memory system architecture that more than
doubles the effective capacity of the installed main
memory without significant added cost.

Engineers from IBM and ServerWorks jointly
developed a new Intel PentiumIII/Xeon Bus
compatible, low cost single chip memory controller
(north bridge) with MXT, called “Pinnacle”. This
unique chip is the first commercially available memory
controller to employ real-time main memory content
compression at a performance competitive with the
markets best products. The Pinnacle chip is
ServerWorks’ flagship product for the commercial
server market.

IBM Memory eXpansion Technology (MXT) Debuts in a ServerWorks
Northbridge

Sujith Arramreddyψ, David Har, Kwok-Ken Mak, T. Basil Smith, R. Brett Tremaineγ,
Mike Wazlowski

ΨServerWorks Inc
2251 Lawson Lane

Santa Clara, CA 95054

IBM T. J. Watson Research Center
P.O. Box 218

Yorktown, NY 10598

γEmail: afton@us.ibm.com
Phone: 914-945-2710

FAX: 914-945-2141

2.0 Architecture

Conventional “commodity” computer systems are
designed with a common architecture, where a
collection of processors are connected to a common
SDRAM based main memory through a memory
controller chip set. We chose a two-level main
memory architecture [1] shown in Figure 1, consisting
of a large shared cache coupled with a typical main
memory array. The high speed cache, containing the
frequently referenced processor data, architecturally
isolates the overall system performance from access
latency to the main memory; thereby opening
opportunities for trading off increased memory access
latency for greater function. For example,
remote/distributed, very large and/or highly reliable
features may be incorporated without adverse effects
to overall system performance.

Main Memory (L4)

Physical
Addresses

I/O

...
Processor

Cache (L1)

Cache (L2)

Processor

Cache (L1)

Cache (L2)

Shared
Cache (L3)

Virtual Addresses

Real
Addresses

Figure 1: System Memory Hierarchy.

The shared cache, coupled with the recent advent
of high density 0.25 micron and smaller ASIC
technology, is leveraged to incorporate a new
“compressed” main memory architecture. Special
logic intensive compressor and decompressor
hardware engines provide the means to simultaneously
compress and decompress data as it is moved between
the shared cache and the main memory. The
compressor encodes 1KB data blocks into as compact
a result as the algorithm permits. A special memory
management architecture is employed to permit storing
the variable sized compressed data units in main
memory, while mitigating fragmentation effects and
avoiding “garbage collection” schemes. This new
architecture serves to halve the main memory cost,
without any significant degradation in overall system
performance.

3.0 Pinnacle Chip

The Pinnacle chip host bridge controller provides
connectivity between 1-4 Intel Pentium III/Xeon
processors, a 32MB DDR SDRAM shared cache
memory, main memory and up to two independent
remote IO PCI bridge (CIOB) chips. The low cost
single chip controller is optimized for use in a wide
range of high performance server system applications.
The full featured (below) chip may be used in two
primary memory configurations as shown in Figure 2.
é Single ChipController

é 731 (525 signal) EPGA 45x45 mm package
éSingle 2.5VDC power supply (6 Watt typical)
é100/133 MHz operation, (synchronous to a
processor, cache and memory interfaces)

é Processor Interface
éPentium III/Xeon; 1-4 processors, 36-bit address
é8 Entry request queue
é8x32B burst write buffer and 8x4B write buffer

é IO Interface
éDual independent full duplex 533MB/s remote
IO bridge Inter-Module Bus links (IMB)
é16 Entry request queue per link

é Shared Cache
éDual ported on chip directory supports 16GB
“real” address space
é32MB DDR SDRAM cache with 1KB line,
4-way set associative, ECC protected
éReference state for snoop filtering (256B
granularity and IO)
é1.6GB/s-2.1GB/s DDR SDRAM cache interface
éLRU replacement, write-back and write allocate
policies

é Main Memory
é1.6GB/s-2.1GB/s access to 16GB uncompressed
or 8GB (16GB effective) compressed memory
éSupports PC100/PC133 DIMM’s
éECC protected w/scrub for x4 and x8 “chip kill”
éHardware memory management with hardware
accelerated 4KB page move, swap and clear
éReal-time hardware dataflow compression
decompression for 1:1 - 64:1 main memory
content compression

é Hardware performance monitor facility
é I2C bus access to all internal registers

The chip internal structure, shown in Figure 3, is
designed with all primary internal data flow at 128-bit
wide, pipelined and full duplex. The cache and IMB
interface operate at double data rate with respect to the
chip clock. Any processor or IO memory references
are directed to the cache controller, resulting in cache
directory look-up to determine if the address is

11/13/00

contained within the cache or not. Cached references
are serviced directly from the cache, while cache read
misses are “deferred”, and the least recently used
cache line is selected for replacement with the new
cache line that contains the requested address. The
cache controller issues a request for the new cache line
from the main memory controller, while at the same
time writing back the old cache line to the write back
buffer (wtq) in cases where the old cache line contains
modified data.

Meanwhile, the memory controller first reads a
small address translation table entry from memory to
determine the location of the requested data. Then the
memory controller commences reading the requested
data. Data is either streamed around the decompressor
(decomp) when uncompressed, or through the
decompressor when compressed. In either case, the
data is then streamed through the elastic buffer (rdq) to
the cache. The memory controller provides 7 cycle
advance notification of when the requested 32B data
will be in the critical word buffer (cw). This permits
the processor bus controller to arbitrate for a deferred
read reply, and deliver data without delay.

Cache write back activity is processed in parallel
with read activity. Once an entire cache line is queued
in the write back buffer (wtq), the compression
commences and runs uninterrupted until complete, 256
cycles later. Then the memory controller stores the
compressed data when a spatial advantage exists,
otherwise the memory controller stores the write back
data directly from the write back buffer. In either case,
the memory controller must first read the translation
table entry for the write back address to allocate the
appropriate storage and update the entry accordingly,
before writing it back to memory. The data itself is
then written to memory, within the allocated sectors.

comp

IMB 0
control

all-ways data switch

cache
control

dir
(8K x
80)

processor bus controller

IMB 1
control

rdq (1K)

main memory control

wtq (2K)

decomp

cw (32)

Figure 3: Pinnacle chip block diagram.

3.1 Shared Cache Subsystem

The shared cache provides low latency processor
and IO subsystem access to frequently accessed
uncompressed data. The data/code/IO unified cache
content is always uncompressed and accessed at 32B
granularity. Write accesses smaller that 32B require
the cache controller to perform a read-modify-write
operation for the requesting agent.

The 32MB, 4-way set associative cache is
organized into four banks of 8K x 1024B lines, or 8K
sets of four lines each. Cache lines within a set are
replaced according to the least recently used (LRU)

11/13/00

Figure 2: Pinnacle chips configurations.

"Pinnacle"
Memory Controller

(525 signal,
731EBGA)

 91
2GB/s

 18
500MB/s

 168
2GB/s

32MB - 8GB Memory
(1 or 2 cards @ 16DIMM ea.

populated in Quad DIMM groups)

 134
1GB/s

CIOB
Dual PCI Bridge

(256PBGA)

CIOB
Dual PCI Bridge

(256PBGA)

32MB Cache
(5x4Mx16

DDR
SDRAMs)

 18
500MB/s

 18
500MB/s

 18
500MB/s

SMB SMB SMB SMB

64bit

64bit

64bit

64bit

PIII Processor PIII Processor. . .

PCI Buses

PIII Processor PIII Processor

"Pinnacle"
Memory Controller

(525 signal,
731EBGA)

. . .

 91
2GB/s

 18
500MB/s

 168
2GB/s

64MB - 8GB Memory
(4 single/double density SDRAM DIMM’s populated in pairs)

 134
1GB/s

"CIOB"
Dual PCI Bridge

(256 PBGA)

32MB Cache
(5x4Mx16

DDR
SDRAMs)

 18
500MB/s 64bit

 64bit

DIMMDIMM

 18
500MB/s

"CIOB"
Dual PCI Bridge

(256 PBGA) 18
500MB/s 64bit

 64bit

PCI Buses

policy. The cache line size was optimally chosen to
minimize the size of the on chip cache directory as
well as to be equivalent in size to the compression
algorithm block size.

The shared cache directory contains a unique
17-bit entry, organized as shown below, for each of the
32K cache lines. The tag address bits permit caching
the low order 16GB of real address space. The
directory is implemented on chip as a 8K x 76 bit dual
port (1 read and 1 write) SRAM. The four entries
associated with a set are accessed concurrently along
with associated LRU state and parity bits.

Tag<10:0>MIORPR<3:0>
10:0111216:13

The relatively long (1KB) cache line merits
special design consideration. For example, the
processor reference bits (PR<3:0>) are used to
mitigate extraneous cache coherency snoop traffic on
the processor bus. These four bits are used to indicate
when any processor has referenced any one or more
quarter cache line (256B) segments. When a cache
line is evicted, only “referenced” 256B cache line
segments, verses the entire 1KB line, need be
invalidated on the processor bus.

Shuttling the wide lines in and out of the cache
during cache line replacement requires at least 64
system clock cycles, or 32 accesses for each write back
and line fill operation. To alleviate processor access
stalls during the lengthy cache line replacement, the
cache controller permits two logical cache lines to
coexist within one physical cache line. This
mechanism permits the cache line to be written back,
reloaded, and referenced simultaneously during cache
line replacement.

During replacement, a state vector is maintained
to indicate old, new, or invalid state for each of the
thirty-two, 32B sub-cache lines within the physical
line. As 32B sub-cache lines are invalidated or moved
from the cache to the write back buffer, the sectors are
marked invalid, indicating that the associated new
sub-cache line may be written into the cache. Each
time a new sub-cache line is loaded, the associated
state is marked new, indicating that processor/IO
access is permitted to the new cache line address.
Further, processor/IO accesses to the old cache address
are also permitted, when the associated sub-cache lines
are marked old. Cache lines are always optimally
fetched and filled, such that the sub-cache line write
back follows the same sub-cache line order to
maximize the amount of valid cache line at all times.

The cache can support up to two concurrent cache
line replacements. Two independent 1KB write back
buffers (wtq) facilitate a store-and-forward pipeline to
the main memory, and one 1KB elastic buffer (rdq)

queues line fill data when the cache is unavailable for
access. A write back buffer must contain the entire
cache line before the main memory compressor may
commence the compression operation. Conversely, the
line fill data stream is delivered directly to the cache as
soon as a minimum 32B granule of data is contained
within the buffer. Two independent 32B critical word
(CW) buffers are used to capture the data associated
with cache misses for direct processor bus access.

3.2 Main Memory Subsystem

The main memory subsystem stores and retrieves
1KB cache lines in response to shared cache write
back (write) and line fill (read) requests. Data is
stored within a 32MB-16GB array comprised of
industry standard PC100/PC133 SDRAM DIMM’s.
The memory controller supports two separate DIMM
configurations for optimal application in both large
and small server applications. The direct attach
configuration supports 2 or 4 single/double density
DIMM’s directly connected to the Pinnacle chip
without any glue logic. Whereas the large memory
configuration supports 1 or 2 cards with synchronous
memory buffer (SMB) chips and 16 DIMM’s each,
populated in quad-DIMM groups. In either
configuration, the array is accessed via the 144-bit
(16B + ECC) data interface with 32B - 256B access
granularity. For minimal latency, uncompressed data
references are always retrieved with the critical 32B
first and 256B address wrapped as shown in Figure 4.

256B 256B256B 256B

Byte 0 Byte
1023

Critical
32B

Figure 4: Critical word fetch order.

The main memory subsystem may be configured
to operate with compression disabled, enabled for
specific address ranges, or completely enabled. When
compression is disabled, the physical memory address
space is directly mapped to the real address space in a
manner equivalent to conventional memory systems.
Otherwise, the memory controller provides real to
physical address translation to accommodate
dynamically allocating storage for the variable size
data associated with compressed 1KB lines. The
additional level of address translation is carried out
completely in hardware using a translation table
apportioned from the main memory.

The physical memory is partitioned into two
regions, or optionally three when uncompressed
memory is configured. The memory is comprised of
two primary data structures; the sector translation

11/13/00

table (STT) and the sectored memory as shown in
Figure 5. The STT consists of an array of 16B entries,
where each entry is directly mapped to a
corresponding 1KB real address. Therefore, the
number of STT entries is directly proportional (1/64)
to the size of the real address space1 declared for a
given system. Each entry describes the attributes for
the data stored in the physical memory and associated
with the corresponding 1KB address. Data may occur
in one of three conditions:
é Compressed to <=120 bits
é Compressed to > 120 bits
é Uncompressed

Sector Translation
Table

Sectored Memory
Region

Physical Address Minimum

Physical Address Maximum

PTR0CTRL PTRn...

PTRnCTRL PTR0 ...

...

256B Sector

256B Sector

16-Byte

Control Bit Field Pointer 0 Pointer 1 Pointer 2 Pointer 3

Figure 5: Memory organization.

When a 1KB data block is compressible to <= 120
bits, then the data is stored directly into the STT entry
with appropriate flags, yielding a maximum
compressibility of 64:1. Otherwise, the data is stored
outside the entry in 1-4, 256B sectors, with the sector
pointers contained within the STT entry. For the case
where the data block is uncompressed, four sectors are
used and the STT entry control field indicates the
“uncompressed” attribute. In cases where unused
“fragments” of sector memory exist within a 4KB real
page, any new storage activity within the same page
can share a partially used sector in increments of 32B.
A maximum of two 1KB blocks within a page may
share a sector. This simple 2-way sharing scheme

typically improves the overall compression efficiency
by 15%, nearly all the potential gain attainable from
combining fragments by any degree of sharing [6].

The sectored memory consists of a “sea” of 256B
chunks of storage or sectors, that
are allocated from a “ heap” of
free sectors available within the
sectored memory region. The
heap is organized as a linked list
of unused sector addresses, with
the list head maintained within a
hardware register. The list itself
is stored within the free sectors,
so the utilization of sectors
oscillates between holding the
free list and data. As shown in
Figure 6, each node of the free list
contains pointers to sixty-three
free 256B sectors and one pointer
to the next 256B node in the
free-list. Since the node is itself a
free or unused 256B sector,
effectively the free-list requires no
additional storage.

A small hardware cache
contains the leading two nodes
(shaded in Figure 6) of the free
list, for rapid access during
allocation and deallocation of
sectors associated with data storage
requests.

Uncompressed memory regions
are areas of the real address space in a compressed
memory in which the data is never compressed. The
Pinnacle chip supports 0-4 such regions, where each
region is configurable as a 32KB-256MB range, 32KB
aligned. These are apportioned from the top of the
sectored memory and are direct mapped as shown in
Figure 7. The access latency to these regions is
minimized as data is directly addressable without the
intermediate step of referencing a STT entry. And of
course, the data is fetched with the requested 32B
first, as is always the case for uncompressed data.

The regions within the STT that contain entries
for addresses within unsectored regions are never
referenced. Not to wasted, these “holes” within the
STT are made available as additional sectored storage
through incorporation on to the free list.

11/13/00

1 The real address space is defined to the operating environment through a hardware register. The BIOS firmware
initializes the register with a value based on the quantity and type of DIMM’s installed in a system. When
compression is enabled, the BIOS doubles this value to indicate a real address space twice as large as is populated
with DIMM’s.

Figure 6:
Free list.

...

free sector pointer 0

next node pointer

free sector pointer 1

free sector pointer 62

...

free sector pointer 0

next node pointer

free sector pointer 1

free sector pointer 62

...

free sector pointer 0

next node pointer

free sector pointer 1

free sector pointer 62

free list head

...

...

free sector pointer 0

0

free sector pointer 1

free sector pointer 62

Physical address minimum

Physical address maximum

Unsectored Region

Sector Translation
Table

Subregion (0)

Subregion (n)

...

Sectored Region (0)

Sectored Region (n)

Sectored Region

16-Byte

Figure 7: Unsectored memory organization.

3.3 Page Operations

A beneficial side effect of “virtualizing” the main
memory through a translation table, is that simple
alteration of the table entry can be used to relocate and
clear data associated with a given table entry. We
capitalized on this notion by implementing a
programmed control mechanism to enable memory
page (4KB) manipulation, at speeds ranging between
0.1-3.0 micro seconds, depending on the amount of
processor bus coherency traffic required. The
Pinnacle chip supports page swap, clear, invalidate,
and flush-invalidate operations.

3.4 Compression/Decompression

The compression/decompression mechanism is the
cornerstone of MXT. Compression, as applied in the
main memory data flow application, requires low
latency and high bandwidth in the read path, and of
course it must be loss-less. Although a plethora of
compression algorithms exist, none met our
architectural criteria. We chose to leverage the
recently available high density (0.25 micron) CMOS
ASIC technology by implementing a gate intensive,
parallelized derivative [2] of the popular Ziv-Lempel
(LZ77) “adaptive dictionary” approach. With this new
scheme, the unencoded data block is partitioned into n
equal parts, each operated on by an independent
compression engine, but with shared dictionaries. It
has been shown experimentally, that parallel

compressors with cooperatively constructed
dictionaries have essentially equivalent compression
efficiency as the sequential LZ77 method [2].

The Pinnacle chip embodiment contains four
compression engines, each operating on 256B (¼ of
the 1KB uncompressed data block), at the rate of
1B/cycle, yielding a 4B/cycle aggregate compression
rate. Referring to Figure 8, each engine contains a
history buffer or dictionary consisting of a 255-byte
Content Addressable Memory (CAM) that functions as
a shift register. Attached to each dictionary are four
255-byte (4080) comparators for locating the incoming
reference byte within the entire dictionary structure.
Each clock cycle, one byte from each 256B source
data block (read from the shared cache write back
buffer) is simultaneously shifted into a respective
dictionary and compared to the accumulated (valid)
dictionary bytes. The longest match of two or more
bytes constitutes a working string while the copy in the
dictionary is the reference string. Should a single byte
match or no match be found, as may be the case for
random data, the reference byte is a raw character.

256B (1B/cy)
256B (1B/cy)

256B (1B/cy)
256B (1B/cy)

CAM array
(dictionary)

by
te

0

by
te

25
4

4080 byte
comparators

String
Detector

Merger

16B/cy to
main

memory

............
by

te
0

by
te

0

by
te

0

by
te

25
4

by
te

25
4

by
te

25
4

............

CRC
Generator

Figure 8: Compressor block diagram.

Compression occurs when working strings within
the compare data stream are replaced with location and
length encoding to the reference strings within the
dictionary. However, it can be seen in the table
below, that the encoding scheme may result in a 256B
uncompressed data stream actually expanding to 288
bytes for a given engine. Therefore special detection
logic is employed to detect when the accumulated
aggregate compressed output exceeds 1KB (or a
programmed threshold), causing compression to be

11/13/00

aborted and the uncompressed data block stored in
memory.

{1, primary length, position,
secondary length}

String
{0, data byte}Raw Character

EncodingCompressed
Data Type

 Strings are detected by one of 255 detectors from
any one of the four dictionaries. Once an emerging
string is detected, future potential strings are ignored
until the end of the current string is detected. The
string detector calculates the length and position of a
working string. At the end, only the longest string, or
that starting nearest the beginning of the dictionary for
multiple strings with the same length, is selected. The
length field ranges from 2-12 bits to encode the
number of bytes in the working string, using a
Huffman coding scheme. The position field ranges
from 2-10 bits to encode the starting address of the
reference string. Merge logic is responsible for
packing the variable length bits stream into a word
addressable buffer.

The much simpler decompressor is comprised of
four engines the each decoding the encoded
compressed data block. Each engine can produce
2B/cycle, yielding an agregate 8B/cy when 1X clocked
or 16B/cycle when 2X clocked, as occurs in Pinnacle.

4.0 Reliability-Availability-Servicability

The importance customers place on the RAS
characteristics of server-class computers compels
server manufacturers to attain the highest cost effective
RAS. Main memory compression adds a new facet to
this endeavor [4], with the primary goal of detecting
any data corruption within the system. Toward that
end, the Pinnacle chip includes many RAS specific
features (delineated below), with appropriate logging
and programmable interrupt control:
é Shared cache ECC
é Shared cache directory parity checking and
programmable hardware assisted test
é Main memory ECC with programmable scrub
é IO channel “dead-man” timer time-out recovery
é Hardware configuration/control register write
protection with service processor override via I2C bus
é Processor/cache/IO interface protocol checking
é Sector Translation Table entry parity checking
é Sector free list parity checking
é Sector out of range checking
é Sectored memory overrun detection
é Sectors used threshold detection (2)
é Compressor/decompressor validity checking
é Compressed memory CRC protection

Since the compression and decompression
functions effectively encode and decode the system
data, any malfunction during the processes can
produce seemingly correct, yet corrupted output.
Further, the hardware function implementation
requires a prodigious quantity of (order 1 million)
logic gates. Thus, the probability for a logic upset
induced data corruption that goes undetected is
significant. Although special fault detection
mechanisms within the compression/decompression
hardware have been incorporated, they cannot provide
complete fault coverage. Therefore, we needed an
improved method of data integrity protection to
minimize the potential for corrupted data to persist in
the system without detection.

We employed a standard 32-bit cyclic redundancy
code (CRC) computation over the uncompressed data
block as it streams into the compressor. When the
compression is complete, and the data is to be stored in
the compressed format (i.e., the data is compressible,
such that a spatial advantage exists over storing the
data in the uncompressed format), the check code is
appended to the end of the compressed data block, and
the associated block size is increased by 4 bytes.
Information that is stored in the uncompressed format
gains little benefit from the CRC protection as it
bypasses the compressor and decompressor functions,
and hence is not covered by the CRC protection.
Servicing a compressed memory read request results in
the decompression of the compressed block and
concurrent recomputation of the CRC over the
uncompressed data stream from the decompressor.
Upon completion of the decompression, the appended
CRC is compared to the re-computed CRC. When the
two are not equal, an uncorrectable error is signaled
within the system to alert the operating system to the
event.

5.0 Operating System Software

All commercial computer operating system (OS)
software environments manage the hardware memory
as a shared resource to multiple processes. In cases
where the memory resource becomes limited, (i.e.,
processes request more memory that is physically
available within the machine,) the OS can take steps
for continued system operation. Typically, the OS
migrates underutilized memory pages (4KB) to disk,
and then reallocates the memory to the requesting
processes. In this manner, the main memory is used
like a cache that is backed by a large disk based
storage. This scheme works quite well because the
absolute amount of memory is known to the OS. This
algorithm still applies to MXT based systems as well.

11/13/00

Although current “shrink wrap” OS software can
be used on an MXT machine, the software cannot yet
distinguish an MXT based machine from a
conventional memory hardware environment. This
poses a problem, as the amount of memory known to
the OS is twice what actually exists within an MXT
machine. Further, the OS is not aware of the notion of
compression ratio either. Therefore, the OS cannot
detect conditions when the physical memory may be
over utilized (i.e., there are too few unused or free
sectors left in the sectored memory), and therefore may
not invoke the paging management software to handle
the situation, possibly leading to a system failure. This
condition can occur when the OS has fully allocated
the available memory and the overall compression
ratio has fallen below 2:1.

Fortunately, minor changes in the OS kernel
virtual memory manager are sufficient to make the OS
“MXT aware” [5], and these changes are underway in
most of the commercial OS products. The same
objective can also be accomplished outside the kernel,
for example in a device driver or service, albeit less
efficiently. We currently have machines deployed with
Linux and the Microsoft Windows 2000/NT 4.0
operating systems.

6.0 Performance

MXT compression performance fundamentally
ranges between 1:0.98 (1:1) and 64:1, including
translation table memory overhead. Figure 10 shows a
representative sampling of the many memory content
compressibility measurements we have taken from
several types of machines. We can take measurements
by either, direct measurement on an MXT machine,
indirect measurement via a monitor program running
on a non-MXT machine, and of course post analysis of
memory dumps. Compressibility only drops below 2:1
in the rare case where the majority of the system
memory contains random or pre-compressed data.

C
o

m
m

er
ce

 1

C
o

m
m

er
ce

 2

T
P

C
-C

L
o

g
ic

 s
im

.

S
W

 D
ev

.

D
B

 S
ta

rt
u

p

D
B

 R
u

n

W
eb

 S
er

ve
r

3D
IX

C
at

ia

N
T

 W
S

Primary System Workload

0

1

2

3

4

5

6

7

C
om

pr
es

si
on

 R
at

io
 (

X
:1

)

AS400
RS6000
390
PC

Figure 10: Memory compressibility.

We have observed that the compression ratio of a
given machine tends to remain relatively constant
throughout the operation of the application set. For
example, monitoring the IBM Internet online ordering
web server2 over a period of 10 hours, indicated a
compression ratio of 2.15:1 +/- 1%. Further, it can be
seen in Figure 11 that the distribution of
compressibility is normal. Each bar of the histogram
represents the degree of compressibility, where the
right most bar is incompressible (1:1), and the left lost
bar is maximally compressed (64:1). The lower line
represents the degree of change in compressibility over
the measurement period.

11/13/00

2 Specific shadow servers 9q, 9w for web site: http://www.pc.ibm.com/ibm_us/

Figure 9: IBM web site compression
distribution.

MXT system performance evaluation can be
considered from two primary perspectives; one being
the intrinsic performance like that measured on any
conventional system, and the other being
cost-performance in memory starved applications.
Much has been written about the performance benefit
additional memory can provide for memory intensive
applications. As one might expect, this is where MXT
systems really stand out. So much so that we typically
see customers experiencing 50%-100% improvement
in system throughput. For example, one customer
operating a compute farm with several thousand dual
processor servers, each containing 1GB of memory,
was able to run one job per unit time on each machine.
When an equivalent (dual processor and 1GB
memory) MXT machine was used in the environment,
two jobs could be run concurrently over the same
period of time because the 1GB was effectively
doubled to 2GB through MXT expansion. Similar
memory dependent performance is observed with the
behavior of the well known SPECweb99 benchmark.
For this case (Figure 11), increasing memory from
256MB to 512MB yields a 45% performance
improvement, beyond 512MB the benefit diminishes.

256->512
512->1G

1G->2G
2G->4G

Memory Quantity (bytes)

0

10

20

30

40

50

R
at

e
of

 Im
pr

ov
em

en
t (

%
)

Figure 11: SPECweb99 performance (amount
of simultaneous connections) dependence on
available system memory.

We began this project with the primary goal of
gaining the benefit of doubling the system memory at a
negligible cost, but without degrading the system
performance. To that end, the Pinnacle chip
performance is based on the intrinsic chip reaction
times, delineated in the table below, as well as the
shared cache hit rate.

16 1 1 1Read, miss compression off
24 1 1 1Read, miss not compressed
69 1 1 1Read, miss compressed (avg)

12 1 1 1Read, hit (SDRAM autoprecharge
mode)

14 1 1 1Read, hit (SDRAM row closed)

14 1 1 1Read, hit (SDRAM row open and row
miss)

8 1 1 1Read, hit (SDRAM row open and row
hit)

6 1 1 1Write

Latency
(bus clock
cycles)

Processor Request
(with respect to shared cache hit/miss)

The shared cache hit rate is application dependent,
and as expected, we typically measure the cache hit
rate at roughly 98% on most applications. However,
the cache hit rate for large data base applications like
TPC-C, SAP and particularly Lotus Notes can range as
low as 94%, as measured by quad processor trace
driven performance models. These applications tend
to reference some database records infrequently,
resulting in a prefetch advantage with the long cache
line, but little reuse of the data within the line.

Our comparison of MXT system performance
with that of a high performance contemporary system,
resulted with the two systems having essentially
equivalent (within 1 point) performance for the
SPECint2000 benchmark. Both machines were IBM
1U commercial servers with 512MB and Intel
733MHz PIII processors, executing program code
from the same disk drive. The two systems differ only
in the memory controller used. While the MXT
system used the ServerWorks Pinnacle chip, the other
system used the ServerWorks CNB30LE chip.

MXT provides a system cost leverage not seen
since the invention of DRAM. Figure 12 illustrates the
degree of this leverage with a case in point. The graph
shows how the cost-performance metric for a family of
conventional machines (dashed line) is dramatically
improved when the effects of MXT are factored in
(solid line). We configured a ProLiant DL360
commercial server on the Compaq Inc. Internet web
site3 for retail equipment sales. This server was priced
at $13,081. Using the same site to configure a
hypothetical MXT equivalent system with half the
memory, yielded over 40% savings at $7,103. Viewed
another way, a hypothetical MXT “better” system can
be configured at the equivalent price to the reference
machine. Either way, an MXT system
cost-performance metric compares quite favorably
with any conventional system.

11/13/00

3 Referenced on September 11, 1999 at web site: http://www5.compaq.com/products/servers/platforms

System Cost

With MXT

Without MXT

$13,081
1,664 MB memory
 1 550 MHz PIII, 100 MHz bus
 1 9.1 GB SCSI drive
 2 10/100 Ethernet ports

$7,103
1,792 MB effective memory (896 physical)
 1 550 MHz PIII, 100 MHz bus
 1 9.1 GB SCSI drive
 2 10/100 Ethernet ports

$13,001
2,304 MB effective memory (1152 physical)
 2 800 MHz PIII w/ 133 MHz bus
 2 9.1 GB SCSI drives
 2 10/100 Ethernet ports
 1 Gigabit Ethernet port

S
ys

te
m

 P
er

fo
rm

an
ce

Figure 12: System cost comparison.

MXT is a logical step in the pervasion of
compression technologies. MXT is a proven
technology that empowers customers to efficiently
utilize their memory investment. Information
Technology professionals can routinely save $1000’s
on systems ranging from high density servers to large
memory enterprise servers. ServerWorks began
sampling the Pinnacle chip in August, 2000, with
production availability in the first quarter, 2001. We
expect MXT technology to expand its presence into
other processor memory controllers, as well as other
memory intensive system applications including, disk
storage controllers, laptops, and data appliances.

Acknowledgments

MXT and its embodiment in the Pinnacle chip
involved significant contributions from many other
people. We especially thank: Peter Franaszek and
John Robinson for their work on the compression
approach; Dan Poff, Rob Saccone and Bulent Abali
for operating system and performance measurement
work; Michel Hack and Chuck Schulz for their work
on the data storage and page operations.

References

[1] M. Abbott, D. Har, L. Herger, M. Kauffmann, K.
Mak, J. Murdock, C. Schulz, T. B. Smith, B.
Tremaine, D. Yeh, L. Wong Durable Memory
RS/6000 System Design, Digest of Papers, The 24th
Annual International Symposium on Fault-Tolerant
Computing, Austin, Texas June 15-17, pp. 414-423,
1994.

[2] P. A. Franaszek, J. Robinson, J. Thomas, Parallel
compression with cooperative dictionary construction.

In Proceedings DCC ’96 Data Compression
Conference, pp. 200-209, IEEE, 1996

[3] Kjelso, M.,Gooch, M. And Jones, S. Design and
performance of a main memory hardware data
compressor. In Proceedings of the 22nd
EUROMICRO Conf., pp. 423-430, IEEE, 1996.

[4] C. L. Chen, D. Har, K. Mak, C. Schulz, B.
Tremaine, M. Wazlowski, “Reliability - Availability -
Serviceability of a Compressed Memory System,” In
Proceedings of the International Symposium on
Dependable Systems and Networks, pp. 163-168,
IEEE, 2000.

[5] B. Abali and H. Franke, "Operating System
Support for Fast Hardware Compression of Main
Memory Contents," Proceedings of the 27th
International Symposium on Computer Architecture,
June, 2000.

[6] P. A. Franaszek, J. Robinson, Design and Analysis
of Internal Organizations for Compressed Random
Access Memories, Research Report RC
21146(94535)20OCT1998, IBM Research, March
1992.

[7] Hovis, et all “Compression Architecture for
system memory application”, United States Patent
US5812817, issued September 22, 1998.

11/13/00

